Kreis-Quadrat
./images/Pyramide_3b_7_transp.png
./images/Osquare/file_100.png

Kreis-Quadrat

Ein Objekt, das als Kreis oder Quadrat erscheint.

2026-01-27 (bs)

Angeblich soll der altgriechische Philosoph Anaxagoras (ca. 430 v.Chr.) schon die Quadratur des Kreises aufgezeichnet haben. Nachfolgende Generationen bestreiten allerdings bis heute, daß das möglich ist. Nun, wie man in dieser Animation sieht, ist das sehr wohl möglich. [¹]
Dieses Objekt verblüfft immer wieder meine Besucher. Ein Ring, der einfach nur mal gedreht, zum Quadrat wird. Wenn man den "Trick" kennt, ist es aber einfach. Ein Rohr hat als Querschnitt einen Kreis und ein hohler Quader hat als Querschnitt ein Rechteck oder Quadrat. Die beiden im richtigen Winkel übereinadergelegt (Schnittmenge) bilden das gesuchte Objekt. Die Kreiseigenschaft kommt vom Rohr, die Quadrateigenschaft vom Quader.

Am besten: Ausdrucken und das Teil in die Hand nehmen.

Dann entdeckt man auch andere Verwendungsmöglichkeiten für das Teil, z.B. als dekorativer Serviettenring:

Objekt als Serviettenring
Objekt als Serviettenring

Die Datei osquare2.scad:




// $Revision: 1032 $  
// $Id: osquare2.scad 1032 2026-01-28 10:41:00Z bernhard $ 
// $Author: bernhard $ 
// $Date: 2026-01-28 11:41:00 +0100 (Mi, 28. Jan 2026) $
// $LastChangedDate: 2026-01-28 11:41:00 +0100 (Mi, 28. Jan 2026) $


/*
CC0 BY (Public Domain)
2025 by bernhard (3d.bit-field.de) -- Creative Commons - Attribution license.
*/






$fn=96;

epsilon=1;
hollow = 0;
cube_bw = 18+5;    // broadth, width
cube_wall = 4;
cyl_wall_o = 1;
cyl_wall = 3;


eps=0.1;

// das "Runde"
module tube() {
    difference() {
        cylinder(30, 15 - 1 * cyl_wall_o, 15 - 1 * cyl_wall_o,center=true);
        cylinder(30 + eps, 15 - cyl_wall, 15 - cyl_wall,center=true);
    }
}


// das "Eckige"
module cubus(hollow=1, eps=epsilon) {
    color("gray", 0.2)
    rotate([0, 45, 0])
        difference() {
          cube([cube_bw - eps, 28, cube_bw - eps], center=true);
          if (hollow != 0) { 
            cube([cube_bw - eps - cube_wall, 28, cube_bw - eps - cube_wall ], center=true);
          }
        }
}

// und das, was sie gemeinsam haben
module obj()
{
  intersection() {
    tube(); 
    cubus(eps=epsilon);
  }

}

// drehen, damit eine "glatte" seite auf den Druckbett liegt 
rotate([0, -45, 0]) obj();

STL-Download (coming very soon)



[¹]: Sorry, dieser Kalauer musste sein. Etwas objektiver ist da Wikipedia.


Titelbildquelle: eigenes Bild


Sende uns Deinen Kommentar

... because software matters